3.2734 \(\int \frac{(1-2 x)^{3/2}}{(2+3 x)^{5/2} \sqrt{3+5 x}} \, dx\)

Optimal. Leaf size=129 \[ -\frac{4}{9} \sqrt{\frac{11}{3}} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ),\frac{35}{33}\right )+\frac{124 \sqrt{1-2 x} \sqrt{5 x+3}}{9 \sqrt{3 x+2}}+\frac{14 \sqrt{1-2 x} \sqrt{5 x+3}}{9 (3 x+2)^{3/2}}-\frac{124}{9} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right ) \]

[Out]

(14*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(9*(2 + 3*x)^(3/2)) + (124*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(9*Sqrt[2 + 3*x]) - (
124*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/9 - (4*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]
*Sqrt[1 - 2*x]], 35/33])/9

________________________________________________________________________________________

Rubi [A]  time = 0.0379736, antiderivative size = 129, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {98, 152, 158, 113, 119} \[ \frac{124 \sqrt{1-2 x} \sqrt{5 x+3}}{9 \sqrt{3 x+2}}+\frac{14 \sqrt{1-2 x} \sqrt{5 x+3}}{9 (3 x+2)^{3/2}}-\frac{4}{9} \sqrt{\frac{11}{3}} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )-\frac{124}{9} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(1 - 2*x)^(3/2)/((2 + 3*x)^(5/2)*Sqrt[3 + 5*x]),x]

[Out]

(14*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(9*(2 + 3*x)^(3/2)) + (124*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(9*Sqrt[2 + 3*x]) - (
124*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/9 - (4*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]
*Sqrt[1 - 2*x]], 35/33])/9

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 158

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{3/2}}{(2+3 x)^{5/2} \sqrt{3+5 x}} \, dx &=\frac{14 \sqrt{1-2 x} \sqrt{3+5 x}}{9 (2+3 x)^{3/2}}+\frac{2}{9} \int \frac{53-29 x}{\sqrt{1-2 x} (2+3 x)^{3/2} \sqrt{3+5 x}} \, dx\\ &=\frac{14 \sqrt{1-2 x} \sqrt{3+5 x}}{9 (2+3 x)^{3/2}}+\frac{124 \sqrt{1-2 x} \sqrt{3+5 x}}{9 \sqrt{2+3 x}}+\frac{4}{63} \int \frac{\frac{1379}{2}+1085 x}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx\\ &=\frac{14 \sqrt{1-2 x} \sqrt{3+5 x}}{9 (2+3 x)^{3/2}}+\frac{124 \sqrt{1-2 x} \sqrt{3+5 x}}{9 \sqrt{2+3 x}}+\frac{22}{9} \int \frac{1}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx+\frac{124}{9} \int \frac{\sqrt{3+5 x}}{\sqrt{1-2 x} \sqrt{2+3 x}} \, dx\\ &=\frac{14 \sqrt{1-2 x} \sqrt{3+5 x}}{9 (2+3 x)^{3/2}}+\frac{124 \sqrt{1-2 x} \sqrt{3+5 x}}{9 \sqrt{2+3 x}}-\frac{124}{9} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )-\frac{4}{9} \sqrt{\frac{11}{3}} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )\\ \end{align*}

Mathematica [A]  time = 0.222324, size = 97, normalized size = 0.75 \[ \frac{2}{27} \left (-29 \sqrt{2} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right ),-\frac{33}{2}\right )+\frac{3 \sqrt{1-2 x} \sqrt{5 x+3} (186 x+131)}{(3 x+2)^{3/2}}+62 \sqrt{2} E\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )|-\frac{33}{2}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - 2*x)^(3/2)/((2 + 3*x)^(5/2)*Sqrt[3 + 5*x]),x]

[Out]

(2*((3*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(131 + 186*x))/(2 + 3*x)^(3/2) + 62*Sqrt[2]*EllipticE[ArcSin[Sqrt[2/11]*Sqr
t[3 + 5*x]], -33/2] - 29*Sqrt[2]*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2]))/27

________________________________________________________________________________________

Maple [C]  time = 0.02, size = 219, normalized size = 1.7 \begin{align*}{\frac{2}{270\,{x}^{2}+27\,x-81} \left ( 87\,\sqrt{2}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) x\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}-186\,\sqrt{2}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) x\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}+58\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) -124\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) +5580\,{x}^{3}+4488\,{x}^{2}-1281\,x-1179 \right ) \sqrt{3+5\,x}\sqrt{1-2\,x} \left ( 2+3\,x \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(3/2)/(2+3*x)^(5/2)/(3+5*x)^(1/2),x)

[Out]

2/27*(87*2^(1/2)*EllipticF(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))*x*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)-1
86*2^(1/2)*EllipticE(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))*x*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)+58*2^(1
/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticF(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))-124*2^(1/2)*(3+5
*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))+5580*x^3+4488*x^2-1281*x
-1179)*(3+5*x)^(1/2)*(1-2*x)^(1/2)/(10*x^2+x-3)/(2+3*x)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-2 \, x + 1\right )}^{\frac{3}{2}}}{\sqrt{5 \, x + 3}{\left (3 \, x + 2\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^(5/2)/(3+5*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((-2*x + 1)^(3/2)/(sqrt(5*x + 3)*(3*x + 2)^(5/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{5 \, x + 3} \sqrt{3 \, x + 2}{\left (-2 \, x + 1\right )}^{\frac{3}{2}}}{135 \, x^{4} + 351 \, x^{3} + 342 \, x^{2} + 148 \, x + 24}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^(5/2)/(3+5*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(5*x + 3)*sqrt(3*x + 2)*(-2*x + 1)^(3/2)/(135*x^4 + 351*x^3 + 342*x^2 + 148*x + 24), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(3/2)/(2+3*x)**(5/2)/(3+5*x)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-2 \, x + 1\right )}^{\frac{3}{2}}}{\sqrt{5 \, x + 3}{\left (3 \, x + 2\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^(5/2)/(3+5*x)^(1/2),x, algorithm="giac")

[Out]

integrate((-2*x + 1)^(3/2)/(sqrt(5*x + 3)*(3*x + 2)^(5/2)), x)